ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education would like to acknowledge the following:

- The Chemistry National Syllabus Learning Area Panel
- United Nations Children’s Fund (UNICEF)
TABLE OF CONTENTS

1 Acknowledgements ... 2

2 Introduction .. 4

UNIT 1: Curriculum Framework for Zimbabwe Primary and Secondary Education 6

UNIT 2: Syllabus interpretation ... 7

UNIT 3: Scheme of work ... 9

UNIT 4: Lesson plan .. 12

UNIT 5: Record keeping ... 14

PART B: Curriculum delivery .. 15

UNIT 6: Scope of the guide ... 18

Annexure ... 20
1.0 ORGANISATION OF THE TEACHER’S GUIDE

This document helps you the teacher to implement the Chemistry curriculum effectively. This teacher’s guide is divided into two parts, A and B. Part A focuses on the critical documents you must have as a teacher. Part B deals with curriculum delivery i.e the content, objectives, methodology, instructional materials, class management and assessment.

Part A-Critical Documents

Part B-Curriculum Delivery

2.0 PART A

CRITICAL DOCUMENTS

Introduction

As a teacher it is important for you to have the critical documents and understand them in order to deliver the Chemistry learning area effectively. The critical documents are listed and described for you.

Rationale

Chemistry plays a role in the technological development of any country since it is embedded in our everyday life. The study of Chemistry enables learners to be creative and innovative in industry and society promoting the application of Chemistry in industrial processes for value addition, beneficiation of natural resources and harnessing of available opportunities for entrepreneurship. The Chemistry syllabus enables learners to develop the following skills:

- Problem Solving
- Critical thinking
- Decision making
- Conflict resolution
- Leadership
- Self-management
- Communication
- Technology and innovation
- Enterprise
Objectives

By the end of part A which is on critical documents as a teacher you should be able to:
 a) Identify critical documents you should have
 b) Show understanding of each document

Critical documents you should have
 ● Curriculum Framework
 ● Chemistry National Syllabus
 ● Chemistry School Syllabus
 ● Scheme cum plan or Schemes of Work and lesson plans
 ● Learner Profile
 ● Records
 ● Register of Attendance
 ● Assessment Framework
UNIT 1

Curriculum Framework for Zimbabwe Primary and Secondary Education

Introduction

This is a policy document that outlines the underpinning national philosophy, principles, learning areas, the description and expectations of Ministry of Primary and Secondary education (MOPSE) at policy level, serving as a prescription of government expectations.

Objectives

By the end of unit 1 as the teacher you should be able to:

- identify key elements of the new curriculum
- demonstrate understanding of the values that define the new curriculum

Key Elements

The following are the key elements of the curriculum framework:

- Background
- Principles and values guiding the curriculum
- Goals of the Curriculum
- Learning areas
- Teaching and learning methods
- Assessment and learning
- Strategies for effective curriculum implementation
- The future
UNIT 2

SYLLABUS INTERPRETATION

Introduction

Syllabi are key documents for you as a teacher which you should always refer to.

Objectives

By the end of this unit you should be able to interpret the national and school syllabi understanding their components.

TYPES OF SYLLABUS

There are two types of syllabi namely national syllabus and school syllabus

2.1 National Syllabus

The national syllabus is a policy document that articulates the learning objectives, the expected outcomes, the learning content and the recommended teaching and learning approaches. It also includes assessment strategies. As a teacher, you should always have it to guide you in your day to day teaching and learning activities.

Elements

Below are the elements found in the national syllabus:

- Acknowledgements
- Contents
- Preamble
- Presentation of the syllabus.
- Aims
- Syllabus objectives
- Methodology and time allocation
- Topic
- Scope and sequence chart
- Form 3-4 competency matrix/form 5-6 competency matrix
- Assessment

Contents

The contents of the national syllabus are in the respective documents
Chemistry Syllabus Form 3-4 and Form 5-6

2.2 School Syllabus

This is drawn at school level from the national syllabus by reorganising content taking into account local factors.
Factors influencing drafting of the school syllabus

The school syllabus is drafted, taking into consideration different factors listed below:
- Level of learner performance (knowledge they already have)- make use of progress reports and evaluation reports
- Relevant facilities and resources (in chemistry one may consider expensive practicals being done in January capitalizing on using left over materials from previous external examination)
- Time allocation in the official syllabus
- Local conditions that affect the choice and sequencing of topics
- Education technology
- Community influences

ELEMENTS

- Topic/content
- Activities
- Time allocation
- Methodology (N.B. learner – centered)
- Instructional or teaching materials
- Assessment
SCHEME OF WORK

Scheme of work is an interpretation of a specification or syllabus and can be used as a guide throughout the course to monitor progress against the original plan. This is a document that as a teacher you should draw from the national and school syllabus. You should outline the objectives, activities, content and methodologies. You should draw your scheme of work/scheme cum plans at least two weeks ahead of lesson delivery date.

Components
Week ending
Topic/Content
Objectives
Competencies
Source
Methods
Activities
Evaluation
<table>
<thead>
<tr>
<th>WEEK ENDING</th>
<th>TOPIC/ CONTENT</th>
<th>OBJECTIVES</th>
<th>COMPETENCIES/ SKILLS/ KNOWLEDGE</th>
<th>SOM/MEDIA</th>
<th>FACILITY /EQUIPMENT</th>
<th>METHODS/ ACTIVITIES</th>
<th>EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/01/2017</td>
<td>Chemical bonding Covalent and ionic bonding</td>
<td>● describe the formation of ionic bonds between metals and a non-metals ● describe the formation of a covalent bond ● deduce chemical formula of a compound from dot and cross diagrams ● Differentiate ionic from covalent compounds. ● describe metallic bonding as ● a lattice of positive ions in a ● 'sea of delocalised electrons' ● relate the physical properties of metals to metallic bonding</td>
<td>predict behaviour of atoms when bonding with other atoms by understanding how atoms are more stable - draw dot and cross diagrams for given compounds - identify metals using paroperties</td>
<td>National Syllabus p8 https://youtu.be/QwpH0Ewwmo o level chemistry (quote relevant textbooks and pages)</td>
<td>Molecular models Science kits Sodium chloride Candle wax Burner Circuit boards Water ICT tools</td>
<td>● Drawing dot and cross diagrams to show ionic and covalent bonding for given compounds ● Constructing models to represent compounds ● Experimenting on: - melting points - boiling points - electrical conductivity - solubility ● Discussing metallic bonding ● Simulations ● Drawing metallic bond model</td>
<td></td>
</tr>
<tr>
<td>WEEK ENDING</td>
<td>TOPIC/ CONTENT</td>
<td>OBJECTIVES</td>
<td>COMPETENCIES/ SKILLS/ KNOWLEDGE</td>
<td>SOM/MEDIA</td>
<td>FACILITY/ EQUIPMENT</td>
<td>METHODS/ ACTIVITIES</td>
<td>EVALUATION</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 20/01/2017 | Electrochemistry | -describe redox processes in terms of electron transfer and changes in oxidation state.
- Calculate oxidation states
Learners identifying redox reactions
Learners calculating oxidation states
Learners drawing standard hydrogen cells
Learners constructing simple cells
Learners measuring electrode potentials | National Syllabus p18
https://youtu.be/QwpH0Ewwmo
A level chemistry (author and page) | Magnesium ribbon, Bunsen burner, copper wire, silver nitrate, iron in copper sulphate
Lemon, connecting wires, bulb, beakers, copper electrode, zinc electrode, copper sulphate, zinc sulphate, voltmeter, cotton, distilled water, potassium nitrate, clips | - Discussing reduction and oxidation in terms of electron transfers.
- Experimenting on redox reactions.
- Calculating oxidation states
- Drawing the standard hydrogen electrode.
- Calculating standard cell potentials.
- Experimenting on constructing simple cells
- Experiment on constructing the Daniell's cell |
UNIT 4

LESSON PLAN

Definition

This is a detailed daily plan of what you intend to deliver during the lesson. This is to be used in the event of you having drawn a scheme of work rather than a scheme cum plan.

Components of a lesson plan

- Date
- Time
- Learning area
- Topic/Content
- Subtopic
- SOM
- Equipment
- Number of students
- Assumed knowledge
- Lesson objectives
- Evaluation

DETAILED LESSON PLAN

Date: 17 January 2017
Form: Form 3
Time: 11:30 -12:40
Learning Area: Chemistry
Topic/Content: Chemical bonding
Sub-Topic: Covalent bonding
S.O.M: National Syllabus page 8

Equipment: models, TV, flash
Number of students: 45
Assumed Knowledge: Learners know the electronic configuration and valencies of elements

Lesson Objectives

By the end of the lesson, learners should be able to:

- Build up compounds using models
- Use the models to draw the “dot and cross” diagrams of given compounds
- Define covalent bond
<table>
<thead>
<tr>
<th>STAGE/TIME</th>
<th>TEACHER ACTIVITIES</th>
<th>LEARNER ACTIVITIES</th>
<th>POINTS TO NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>- to play a short video on structures of molecules - to supervise the learners as they watch the video a</td>
<td>- to watch a short video on structures of molecules - engage in class discussion</td>
<td>Mastering of structure formation</td>
</tr>
<tr>
<td>10 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skill development</td>
<td>- to supervise the learners as they build up model molecules</td>
<td>- to collect the required models - to build up model compounds using model elements and bonds in groups</td>
<td>Accuracy in bond formation</td>
</tr>
<tr>
<td>20 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>- to give learners the task to draw the dot and cross diagrams of a variety of compounds</td>
<td>- to draw dot and cross diagrams for the compounds using the models in groups</td>
<td>Accuracy in drawing “dot and cross” diagrams</td>
</tr>
<tr>
<td>20 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>- organizes Learners to presents their solutions. - Create a platform for class discussion on group presentations</td>
<td>- present their findings per group and entertain questions from the class</td>
<td>Mastery of the concepts under discussion</td>
</tr>
<tr>
<td>10 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conclusion</td>
<td>- harmonizes the findings from Learners and top up with suitable scientific terms.</td>
<td>- take down questions on power point</td>
<td></td>
</tr>
<tr>
<td>10 mins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LESSON EVALUATION:

Strength: ..
..
..
..

Areas to be improved: ...
..
..
..
UNIT 5

RECORD - KEEPING

Records are critical documents about the teaching and learning process which you must keep as a teacher

TYPES OF RECORDS

- National syllabuses
- School syllabuses
- Records of staff details
- Records of learner details
- Supervision records
- Files, circulars, handouts, past exam papers
- Minutes of meetings
- Inventory of resource materials
- Stock control registers
- Progress records
- Learners profile
- Assessment framework

Conclusion

It is advisable to have and keep these documents diligently as they are professional documents. They should be ready for supervision so should be kept safely.
3.0 PART B

CURRICULUM DELIVERY

Introduction

This part deals with curriculum development and it is important as a teacher to be well versed with the content, objectives, methodology, learning-teaching materials, evaluation/assessment and class management.

3.1 Objectives

By the end of this unit, you should be able to:
- select appropriate teaching methods for your lessons
- use a variety of learner-centered approaches
- plan and organize study tours
- help pupils carry-out projects or experiments

3.2 CONTENT

The scope of the chemistry syllabus enables learners to understand the technological world in which they live and take an informed interest in science and scientific development. In curriculum delivery it is important to take note of cross cutting issues and how they affect the learner and the immediate environment. In embracing the content it is vital to take into consideration issues such as HIV and AIDS, pollution and climate change. Of paramount importance is the issue of safety precautions which should be diligently observed. Learners gain an understanding of the basic principles of Chemistry through a mix of theoretical and practical studies. The content is designed to produce learners that are scientifically competent, research oriented and has a sense of humanity. As they progress learners understand how Chemistry is studied and practiced and become aware that the results of scientific research can have both good and bad effects on individuals, communities and the environment.

3.3 Methodology

As a teacher it is important for you to use problem-solving and learner-centered approaches. You are the facilitator and the learner is the doer. Select appropriate teaching methods for your lessons. You should use a variety of learner-centered approaches, plan and help learners carry-out projects or experiments. Given below are the methodologies you can embrace during curriculum delivery. However the list is not exhaustive.
- Question and answer
- Lecture
- Demonstration
- Observation
- Simulation
- Role play
- Experimentation
- Project
- Field trips

Choice of method is influenced by:
- Your personality
- learner’s level of development (cognitive, affective and psychomotor)
Cross-Cutting Themes

The Chemistry learning area encompasses the cross-cutting themes listed below:

- Inclusivity
- Environmental issues
- Indigenous knowledge system
- Enterprise Education
- Life skills
- Teamwork
- Food security
- Safety and health issues
- Disaster risk management
- HIV/AIDS

3.4 Teaching and Learning Materials

There are a variety of teaching and learning materials that can be employed in the chemistry curriculum delivery. You are encouraged to be resourceful and improvise wherever possible. Given below are examples of materials you can use:

- test tubes
- burettes
- magnesium ribbon
- Bunsen burner
- water bath
- electronic balance
- pH meter
- nitric acid
- sodium hydroxide
- copper sulphate
- projector
- model kits

3.5 Assessment and Evaluation

There is need to measure your success in terms of teaching and learner performance. Evaluation is aimed at giving you feedback on the acquisition of knowledge, competencies, and attitude of learners.

Evaluation/assessment can be in form of exercises, tests, projects, or group tasks. There are two main types of evaluation:

- Formative evaluation (ongoing/continuous)
- Summative evaluation (coming at the end of the course)

Methods of assessment

- Tests and exercises
- Assignments
- Research
3.6 Class Management

Is the process of planning, organizing, leading and controlling class activities to facilitate effective teaching and learning. Classroom management can be categorized into organizational, physical, emotional, grouping, control, motivation and supervision.

● ORGANISATIONAL SKILLS FOR EFFECTIVE CHEMISTRY LEARNING
Laboratory organization which covers:
- physical environment
- emotional environment
- grouping the learners
- class control and discipline
- supervision

● PHYSICAL ENVIRONMENT
- Laboratory to be clean, tidy and well ventilated
- Safety considerations when arranging furniture/equipment
- Teaching aids to be visible to learners

● EMOTIONAL ENVIRONMENT
- Be firm, warm and pleasant
- Set the right tone
- Tell learners what behavior you expect

● GROUPING
- Learners may be grouped according to needs, abilities, problems but not sex
- Promote sharing of ideas among learners

● CLASS CONTROL AND DISCIPLINE
- Know the schools policy on discipline
- Be firm and fair
- Punishment should be corrective
- Acknowledge good behavior
- Make use of prefects and class monitors
- Create an atmosphere of trust and honesty
- Aim for intrinsic discipline

● MOTIVATION
- Make learners feel important
- Recognize and reward excellence
- Be a role model in terms of your demeanor

● SUPERVISION
- Check learners` work in order to guide and correct them
- Areas that require supervision include practical work, written work, discussions, group work and field trips
UNIT 6

SCOPE OF THE GUIDE

Topics to be covered (form 3-4 and form 5-6)

<table>
<thead>
<tr>
<th>Form 3-4</th>
<th>Form 5-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry:</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>- Laboratory techniques</td>
<td>- Atoms, Molecules and Stoichiometry</td>
</tr>
<tr>
<td>- Matter</td>
<td>- Atomic structure</td>
</tr>
<tr>
<td>- Atoms, Elements and Compounds</td>
<td>- Chemical bonding</td>
</tr>
<tr>
<td>- Chemical bonding</td>
<td>- States of matter</td>
</tr>
<tr>
<td>- The Mole concept</td>
<td>- Chemical energetic</td>
</tr>
<tr>
<td>- Stoichiometry</td>
<td>- Electrochemistry</td>
</tr>
<tr>
<td>- Acids, Bases and Salts</td>
<td>- Equilibria</td>
</tr>
<tr>
<td>- Electrochemistry</td>
<td>- Reaction kinetics</td>
</tr>
<tr>
<td>- Chemical energetic Equilibria</td>
<td></td>
</tr>
<tr>
<td>- Reaction kinetics</td>
<td></td>
</tr>
<tr>
<td>Inorganic Chemistry:</td>
<td>Inorganic Chemistry:</td>
</tr>
<tr>
<td>- Periodic table</td>
<td>- Chemical Periodicity of period 3</td>
</tr>
<tr>
<td>- Metals</td>
<td>- Chemistry of Group II elements</td>
</tr>
<tr>
<td>- Non metals</td>
<td>- Chemistry of Group IV elements</td>
</tr>
<tr>
<td>Organic Chemistry:</td>
<td>- Chemistry of Group VII elements</td>
</tr>
<tr>
<td>- Fuels</td>
<td>- Chemistry of Nitrogen and Sulphur</td>
</tr>
<tr>
<td>- Classification and naming of organic compounds</td>
<td></td>
</tr>
<tr>
<td>- Hydrocarbons</td>
<td>- Organic Chemistry</td>
</tr>
<tr>
<td>- Alcohols and carboxylic acids</td>
<td>- Hydrocarbons</td>
</tr>
<tr>
<td>- Polymers</td>
<td>- Halogen derivatives</td>
</tr>
<tr>
<td>Environmental Chemistry</td>
<td>- Hydroxyl compounds</td>
</tr>
<tr>
<td>- Waste management</td>
<td>- Carbonyl compounds</td>
</tr>
<tr>
<td>- Pollution</td>
<td>- Carboxylic acids and derivatives</td>
</tr>
<tr>
<td>- Water purification</td>
<td>- Nitrogen compounds</td>
</tr>
<tr>
<td>- herbs</td>
<td>- Polymerisation</td>
</tr>
<tr>
<td>Applied Chemistry</td>
<td></td>
</tr>
<tr>
<td>TOPIC (POLLUTION)</td>
<td></td>
</tr>
</tbody>
</table>

Teachable units
- Sources of pollutants
- Effects of pollutants
- Methods of controlling
pollution

E.g. Sources of pollutants (teachable unit)

Content

- industrial waste
- exhaust fumes
- domestic waste

Activities

- Learners take a tour in groups around the school campus identifying sources of pollution
- Record their findings
- Discuss their findings and write notes

Methodology (learner-centred)

- Group work
- Discovery
- Experimentation
- Field trip
- Research
- Question and answer

Teaching and Learning Materials

ICT tools
Litter
Water from different sources
pH meter
beakers
catalytic convertor
printed materials (textbooks, modules and handouts)
chalkboard
video clips showing pollution

You are encouraged to breakdown all the topics into teachable units as demonstrated above.

CONCLUSION

It is the assumption of the Ministry of Education in conjunction with the compilers of this guide that this document will be helpful to the teacher to appreciate and embrace the new curriculum. The guide is not is not an exhaustive prescription for effective teaching and learning therefore the teacher is encouraged to be creative, initiative and, innovative for effective implementation of the new curriculum.
SCOPE AND SEQUENCE CHART

FORM 3 AND FORM 4

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FORM 3</th>
<th>FORM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL CHEMISTRY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory techniques</td>
<td>• Measuring Instruments</td>
<td>• Volumetric Analysis</td>
</tr>
<tr>
<td></td>
<td>• Separation techniques</td>
<td>• Separation Techniques</td>
</tr>
<tr>
<td></td>
<td>- Filtration,</td>
<td>- Fractional distillation</td>
</tr>
<tr>
<td></td>
<td>- Distillation</td>
<td>- Chromatography</td>
</tr>
<tr>
<td></td>
<td>- Crystallisation</td>
<td>• Qualitative analysis</td>
</tr>
<tr>
<td>Matter</td>
<td>• Matter</td>
<td>• Heating and cooling curves</td>
</tr>
<tr>
<td>Atoms, Elements and Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Atomic structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elements</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Metallic Bonding</td>
<td></td>
</tr>
<tr>
<td>The Mole concept</td>
<td>• Mole Concept</td>
<td>• Percentage Composition</td>
</tr>
<tr>
<td>Stoichiometry</td>
<td>• Chemical equations</td>
<td>• Molar gas volume</td>
</tr>
<tr>
<td>Acids, Bases and Salts</td>
<td>• Properties of Acids and Bases</td>
<td>• Percentage yield and purity</td>
</tr>
<tr>
<td></td>
<td>• Preparation of salts</td>
<td></td>
</tr>
<tr>
<td>Electrochemistry</td>
<td>• Redox reactions</td>
<td>• Redox equations</td>
</tr>
<tr>
<td></td>
<td>• Cells and batteries</td>
<td>• Electrolytic</td>
</tr>
<tr>
<td></td>
<td>• Electrolysis of water</td>
<td>• purification of copper</td>
</tr>
<tr>
<td>Chemical energetics</td>
<td>• Endothermic and Exothermic reactions</td>
<td>• Enthalpy changes</td>
</tr>
<tr>
<td></td>
<td>• Energy profile diagrams</td>
<td>- Neutralisation</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>• Reversible reactions</td>
<td>- Combustion</td>
</tr>
<tr>
<td></td>
<td>• Dynamic equilibrium</td>
<td>- Solution</td>
</tr>
<tr>
<td></td>
<td>• Haber process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Contact process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ostwald process</td>
<td></td>
</tr>
<tr>
<td>Reaction kinetics</td>
<td>• Rates of reactions</td>
<td>• Production of fertilisers</td>
</tr>
<tr>
<td></td>
<td>• Factors affecting rate of reactions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industrial applications</td>
</tr>
</tbody>
</table>
INORGANIC CHEMISTRY

<table>
<thead>
<tr>
<th>Periodic table</th>
<th>Periodic trends • Group trends</th>
<th>Transition elements - Properties and uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals and Non - Metals</td>
<td>Properties of metals and non-metals • Reactivity series</td>
<td>Composition of mineral ores • Extraction of metals</td>
</tr>
<tr>
<td>Non metals</td>
<td>Lime in agriculture and construction</td>
<td>Processing of diamond and coal • Liquefaction and distillation of air</td>
</tr>
</tbody>
</table>

ORGANIC CHEMISTRY:

<table>
<thead>
<tr>
<th>Fuels</th>
<th>Types of fuels • Production of fuels</th>
<th>Fuel efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification and nomenclature of organic Compounds</td>
<td>Homologous series - Hydro carbons - Alcohols - Carboxylic acids</td>
<td>Isomerism</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td></td>
<td>Alkanes and Alkenes</td>
</tr>
<tr>
<td>Alcohols</td>
<td></td>
<td>Fermentation • Properties of ethanol</td>
</tr>
<tr>
<td>Carboxylic Acids</td>
<td></td>
<td>Carboxylic acids</td>
</tr>
<tr>
<td>Polymers</td>
<td></td>
<td>Synthetic polymers • Natural Polymers</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL CHEMISTRY

<table>
<thead>
<tr>
<th>Waste management</th>
<th>Classification of waste • Effects of waste on the environment</th>
<th>Waste disposal methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollution</td>
<td>Sources of pollutants</td>
<td></td>
</tr>
<tr>
<td>Water purification</td>
<td>Composition of water from different sources</td>
<td>Water purification</td>
</tr>
<tr>
<td>Herbs</td>
<td></td>
<td>Herbs</td>
</tr>
</tbody>
</table>
SCOPE AND SEQUENCE CHART

FORM 5 AND FORM 6

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>FORM 5</th>
<th>FORM 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 PHYSICAL CHEMISTRY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atoms, Molecules and Stoichiometry</td>
<td>• Relative masses of atoms and molecules</td>
<td>• Stoichiometric reaction ratios</td>
</tr>
<tr>
<td></td>
<td>• Mass spectra</td>
<td>• Titration</td>
</tr>
<tr>
<td></td>
<td>• The mole and Avogadro constant</td>
<td>• Percentage yield and percentage purity</td>
</tr>
<tr>
<td></td>
<td>• Empirical and molecular formulae</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stoichiometric calculations</td>
<td></td>
</tr>
<tr>
<td>Atomic structure</td>
<td>• Sub-atomic particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Electronic configurations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ionisation energy</td>
<td></td>
</tr>
<tr>
<td>Chemical bonding</td>
<td>• Ionic bonding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Covalent bonding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bond reactivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dative bonding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Shapes of molecules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Metallic bonding</td>
<td></td>
</tr>
<tr>
<td>States of matter</td>
<td>• Intermolecular forces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gaseous state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Liquid state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Solid state</td>
<td></td>
</tr>
<tr>
<td>Chemical energetics</td>
<td>• Enthalpy changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hess’ Law and Born-Haber cycles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Charge density</td>
<td></td>
</tr>
<tr>
<td>Electrochemistry</td>
<td>• Redox processes</td>
<td>• Redox titration</td>
</tr>
<tr>
<td></td>
<td>• Electrode potentials</td>
<td>• Fuel cells</td>
</tr>
<tr>
<td></td>
<td>• Electrolysis of acidified water</td>
<td>• Quantitative electrolysis</td>
</tr>
<tr>
<td></td>
<td>• Electrolytic purification of copper/nickel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Extraction of aluminium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Production of chlorine from brine</td>
<td></td>
</tr>
</tbody>
</table>
Equilibria
- Chemical equilibria
- Equilibrium constants
- Factors affecting equilibrium
- Ionic equilibria
- Bronsted-Lowry theory of acids and bases
- pH and pOH
- Acid and base dissociation constants
- Choice of indicators
- Titration curves

Reaction kinetics
- Rate equations
- Mechanism of reactions
- Factors affecting rates of reactions

7.2 INORGANIC CHEMISTRY

Chemical Periodicity of period 3
- Variation in Physical properties
- Variation in Chemical properties

Chemistry of Group II elements
- Trends in Physical properties
- Trends in Chemical properties
- Properties and uses of Group II compounds

Chemistry of Group IV elements
- Trends in Physical properties
- Trends in Chemical properties
- Properties and uses of Group IV elements and compounds

Chemistry of Group VII elements
- Trends in Physical properties
- Trends in Chemical properties
- Properties and uses of Group VII elements and compounds

Chemistry of Nitrogen and Sulphur
- Chemical properties of Nitrogen
- Chemical properties of Sulphur

Buffer solutions
- Solubility products

Catalysis
<table>
<thead>
<tr>
<th>7.3 ORGANIC CHEMISTRY:</th>
<th>Chemistry Teachers' Guide 2015-2022 FORM 3-6</th>
</tr>
</thead>
</table>
| **Hydrocarbons** | • Nomenclature
• Isomerism
• Preparation and occurrence
• Physical properties
• Chemical properties
• Reaction mechanisms |
| **Halogen derivatives** | • Nomenclature
• Isomerism
• Preparation
• Physical properties
• Chemical properties
• Reaction mechanisms |
| **Hydroxy compounds** | • Nomenclature
• Isomerism
• Manufacture
• Preparation and occurrence
• Physical properties
• Chemical properties
• Reaction mechanisms |
| **Carbonyl compounds** | • Nomenclature
• Isomerism
• Preparation
• Physical properties
• Chemical properties |
| **Carboxylic acids and derivatives** | • Nomenclature
• Preparation and occurrence
• Physical properties
• Chemical properties
• Reaction mechanisms |
| **Nitrogen compounds** | • Preparation and occurrence
• Chemical properties |
| **Polymerisation** | • Types of Polymerisation
- addition
- condensation
• Uses of polymers |
7.4 APPLIED CHEMISTRY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition Elements</td>
<td>• Characteristic properties • Occurrence and extraction</td>
</tr>
<tr>
<td></td>
<td>• Chemical properties and uses</td>
</tr>
<tr>
<td>Phase Equilibria</td>
<td>• Steam Distillation • Distribution between phases</td>
</tr>
<tr>
<td></td>
<td>• Chromatography and electrophoresis</td>
</tr>
<tr>
<td>Environmental Chemistry</td>
<td>• Pollution • Waste management</td>
</tr>
<tr>
<td>Nano Chemistry</td>
<td>• Properties of nanomaterials • Applications of nanomaterials</td>
</tr>
</tbody>
</table>